Scaling functions to body size: theories and facts.
نویسندگان
چکیده
Editorial Scaling functions to body size: theories and facts 'Why do small animals live faster and shorter?' 'What sets the pace of life?' These are questions that have interested biologists for more than 150 years, leading to debates between theorists and experimentalists that continue today. As early as 1839, Sarrus and Rameaux (1839) realized that metabolic power cannot increase with the third power of the linear dimension or body mass, but is limited by the capacity to get rid of heat; hence, for organisms to stay in energy balance, metabolism can only vary in proportion to their surface area. Rubner (1883) found in fact that metabolic rate in dogs was in proportion to body surface area and proposed that it should scale with body mass raised to the power of 2/3. Obtaining estimates of basal metabolic rate (BMR) on a large number of species small and large, Kleiber (1932) experimentally found a (close to) 3/4 exponent to describe the relationship between BMR and body mass rather than the 2/3 exponent predicted from Rubner's 'law'. Kleiber's 'law' has been confirmed by many studies since (Schmidt-Nielsen, 1984), even though it continues to be contested. In contrast to Rubner's surface law, Kleiber's 3/4 exponent is enigmatic, with no obvious relation to body design. A quest for explaining such an important allometric relationship fostered new theories. McMahon (1975) developed the concept of elastic similarity, stating that the likelihood of elastic failure of support structures should be kept similar in animals of all sizes. The result of this analysis indicates that legs of smaller animals can be more slender than legs of large animals. Considering elastic similarity and that the power costs of muscle work are proportional to muscle cross-sectional area, the 3/4 scaling of MR is obtained, and thus scaling theory and the experimental evidence can be brought in line. Using an entirely different intellectual approach, West et al. (1997) have more recently invoked the fractal nature of the (energy) distributing vascular network in animals, to arrive at the 3/4 scaling exponent from first principles. A similar approach, also yielding a 3/4 scaling exponent but using fewer assumptions, has been proposed by Banvar et al. (1999). Bejan's 'constructal theory' (Bejan, 2000, and p. 1677) also explains a 3/4 scaling exponent by considering that flow architectures can be deduced by a single law of maximization of access for currents. So where do we stand today? …
منابع مشابه
Numerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
متن کاملFACTS Devices Allocation to Congestion Alleviation Incorporating Voltage Dependence of Loads
This paper presents a novel optimization based methodology to allocate Flexible AC Transmission Systems (FACTS) devices in an attempt to improve the previously mentioned researches in this field. Static voltage stability enhancement, voltage profile improvement, line congestion alleviation, and FACTS devices investment cost reduction, have been considered, simultaneously, as objective funct...
متن کاملتعیین بهینه تولید و مکان و اندازه بهینه ادوات FACTS به منظور حذف تراکم خطوط
The application of Flexible AC Transmission System (FACTS) devices shows that they can control the power system technical parameters effectively. However, optimal placement and sizing of them are difficult problems and analytical methods cannot be used to solve these problems. To solve such problems, some evolutionary algorithms are employed. The efficiency of these algorithms is related to the...
متن کاملFree Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories
In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 208 Pt 9 شماره
صفحات -
تاریخ انتشار 2005